skip to main content


Search for: All records

Creators/Authors contains: "Li, Longqiu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Naturally-occurring thermal materials usually possess specific thermal conductivity (κ), forming a digital set ofκvalues. Emerging thermal metamaterials have been deployed to realize effective thermal conductivities unattainable in natural materials. However, the effective thermal conductivities of such mixing-based thermal metamaterials are still in digital fashion, i.e., the effective conductivity remains discrete and static. Here, we report an analog thermal material whose effective conductivity can be in-situ tuned from near-zero to near-infinityκ. The proof-of-concept scheme consists of a spinning core made of uncured polydimethylsiloxane (PDMS) and fixed bilayer rings made of silicone grease and steel. Thanks to the spinning PDMS and its induced convective effects, we can mold the heat flow robustly with continuously changing and anisotropicκ. Our work enables a single functional thermal material to meet the challenging demands of flexible thermal manipulation. It also provides platforms to investigate heat transfer in systems with moving components.

     
    more » « less
  3. Small machines are highly promising for future medicine and new materials. Recent advances in functional nanomaterials have driven the development of synthetic inorganic micromachines that are capable of efficient propulsion and complex operation. Miniaturization and large‐scale manufacturing of these tiny machines with true nanometer dimension are crucial for compatibility with subcellular components and molecular machines in operation. Here, block copolymer lithography is combined with atomic layer deposition for wafer‐scale fabrication of ultrasmall coaxial TiO2/Pt nanotubes as catalytic rocket engines with length below 150 nm and a tubular reactor size of only 20 nm, leading to the smallest man‐made rocket engine reported to date. The movement of the nanorockets is examined using dark‐field microscopy particle tracking and dynamic light scattering. The high catalytic activity of the Pt inner layer and the reaction confined within the extremely small nanoreactor enable highly efficient propulsion, achieving speeds over 35 µm s−1at a low Reynolds number of <10−5. The collective movements of these nanorockets are able to efficiently power the directional transport of significantly larger passive cargo.

     
    more » « less